
Ramses Documentation
Release

Brandicted

Oct 05, 2017

Contents

1 Table of Contents 3
1.1 Getting started . 3
1.2 RAML Configuration . 4
1.3 Defining Schemas . 5
1.4 Fields . 6
1.5 Event Handlers . 9
1.6 Field processors . 12
1.7 Relationships . 13
1.8 Changelog . 18

i

ii

Ramses Documentation, Release

Ramses is a framework that generates a RESTful API using RAML. It uses Pyramid and Nefertari which provides
Elasticsearch / Posgres / MongoDB / Your Data Store™ -powered views. Using Elasticsearch enables Elasticsearch-
powered requests which provides near real-time search.

Website: http://ramses.tech

Source code: http://github.com/ramses-tech/ramses

Contents 1

http://raml.org
https://nefertari.readthedocs.org/
http://nefertari.readthedocs.org/en/stable/making_requests.html
http://nefertari.readthedocs.org/en/stable/making_requests.html
http://ramses.tech
http://github.com/ramses-tech/ramses

Ramses Documentation, Release

2 Contents

CHAPTER 1

Table of Contents

Getting started

1. Create your project in a virtualenv directory (see the virtualenv documentation)

$ virtualenv my_project
$ source my_project/bin/activate
$ pip install ramses
$ pcreate -s ramses_starter my_project
$ cd my_project
$ pserve local.ini

2. Tada! Start editing api.raml to modify the API and items.json for the schema.

Requirements

• Python 2.7, 3.3 or 3.4

• Elasticsearch (data is automatically indexed for near real-time search)

• Postgres or Mongodb or Your Data Store™

Examples

• For a more complete example of a Pyramid project using Ramses, you can take a look at the Example Project.

• RAML can be used to generate an end-to-end application, check out this example using Ramses on the backend
and RAML-javascript-client + BackboneJS on the front-end.

Tutorials

• Create a REST API in Minutes With Pyramid and Ramses

3

https://virtualenv.pypa.io
https://github.com/ramses-tech/ramses-example
https://github.com/jstoiko/raml-javascript-client
https://realpython.com/blog/python/create-a-rest-api-in-minutes-with-pyramid-and-ramses/

Ramses Documentation, Release

• Make an Elasticsearch-powered REST API for any data with Ramses

RAML Configuration

You can read the full RAML specs here.

Authentication

In order to enable authentication, add the auth parameter to your .ini file:

auth = true

In the root section of your RAML file, you can add a securitySchemes, define the x_ticket_auth method
and list it in your root-level securedBy. This will enable cookie-based authentication.

securitySchemes:
- x_ticket_auth:

description: Standard Pyramid Auth Ticket policy
type: x-Ticket
settings:

secret: auth_tkt_secret
hashalg: sha512
cookie_name: ramses_auth_tkt
http_only: 'true'

securedBy: [x_ticket_auth]

A few convenience routes will be automatically added:

• POST /auth/register: register a new user

• POST /auth/login: login an existing user

• GET /auth/logout: logout currently logged-in user

• GET /users/self: returns currently logged-in user

ACLs

In your securitySchemes, you can add as many ACLs as you need. Then you can reference these ACLs in your
resource’s securedBy.

securitySchemes:
(...)
- read_only_users:

description: ACL that allows authenticated users to read
type: x-ACL
settings:

collection: |
allow admin all
allow authenticated view

item: |
allow admin all
allow authenticated view

(...)

4 Chapter 1. Table of Contents

https://www.elastic.co/blog/make-an-elasticsearch-powered-rest-api-for-any-data-with-ramses
http://raml.org/spec.html

Ramses Documentation, Release

/items:
securedBy: [read_only_users]

Enabling HTTP Methods

Listing an HTTP method in your resource definition is all it takes to enable such method.

/items:
(...)
post:

description: Create an item
get:

description: Get multiple items
patch:

description: Update multiple items
delete:

description: delete multiple items

/{id}:
displayName: One item
get:

description: Get a particular item
delete:

description: Delete a particular item
patch:

description: Update a particular item

You can link your schema definition for each resource by adding it to the post section.

/items:
(...)
post:

(...)
body:

application/json:
schema: !include schemas/items.json

Defining Schemas

JSON Schema

Ramses supports JSON Schema Draft 3 and Draft 4. You can read the official JSON Schema documentation here.

{
"type": "object",
"title": "Item schema",
"$schema": "http://json-schema.org/draft-04/schema",
(...)

}

All Ramses-specific properties are prefixed with an underscore.

1.3. Defining Schemas 5

http://json-schema.org/documentation.html

Ramses Documentation, Release

Showing Fields

If you’ve enabled authentication, you can list which fields to return to authenticated users in _auth_fields and to
non-authenticated users in _public_fields. Additionaly, you can list fields to be hidden but remain hidden (with
proper persmissions) in _hidden_fields.

{
(...)
"_auth_fields": ["id", "name", "description"],
"_public_fields": ["name"],
"_hidden_fields": ["token"],
(...)

}

Nested Documents

If you use Relationship fields in your schemas, you can list those fields in _nested_relationships. Your
fields will then become nested documents instead of just showing the id. You can control the level of nesting by
specifying the _nesting_depth property, defaul is 1.

{
(...)
"_nested_relationships": ["relationship_field_name"],
"_nesting_depth": 2
(...)

}

Custom “user” Model

When authentication is enabled, a default “user” model will be created automatically with 4 fields: “username”,
“email”, “groups” and “password”. You can extend this default model by defining your own “user” schema and by
setting _auth_model to true on that schema. You can add any additional fields in addition to those 4 default fields.

{
(...)
"_auth_model": true,
(...)

}

Fields

Types

You can set a field’s type by setting the type property under _db_settings.

"created_at": {
(...)
"_db_settings": {

"type": "datetime"
}

}

6 Chapter 1. Table of Contents

Ramses Documentation, Release

This is a list of all available types:

• biginteger

• binary

• boolean

• choice

• date

• datetime

• decimal

• dict

• float

• foreign_key

• id_field

• integer

• interval

• list

• pickle

• relationship

• smallinteger

• string

• text

• time

• unicode

• unicodetext

Required Fields

You can set a field as required by setting the required property under _db_settings.

"password": {
(...)
"_db_settings": {

(...)
"required": true

}
}

Primary Key

You can use an id_field in lieu of primary key.

1.4. Fields 7

Ramses Documentation, Release

"id": {
(...)
"_db_settings": {

(...)
"primary_key": true

}
}

You can alternatively elect a field to be the primary key of your model by setting its primary_key property under
_db_settings. For example, if you decide to use username as the primary key of your User model. This will
enable resources to refer to that field in their url, e.g. /api/users/john

"username": {
(...)
"_db_settings": {

(...)
"primary_key": true

}
}

Constraints

You can set a minimum and/or maximum length of your field by setting the min_length / max_length properties
under _db_settings. You can also add a unique constraint on a field by setting the unique property.

"field": {
(...)
"_db_settings": {

(...)
"unique": true,
"min_length": 5,
"max_length": 50

}
}

Default Value

You can set a default value for you field by setting the default property under _db_settings.

"field": {
(...)
"_db_settings": {

(...)
"default": "default value"

}
},

The default value can also be set to a Python callable, e.g.

"datetime_field": {
(...)
"_db_settings": {

(...)
"default": "{{datetime.datetime.utcnow}}"

8 Chapter 1. Table of Contents

Ramses Documentation, Release

}
},

Update Default Value

You can set an update default value for your field by setting the onupdate property under _db_settings. This is
particularly useful to update ‘datetime’ fields on every updates, e.g.

"datetime_field": {
(...)
"_db_settings": {

(...)
"onupdate": "{{datetime.datetime.utcnow}}"

}
},

List Fields

You can list the accepted values of any list or choice fields by setting the choices property under
_db_settings.

"field": {
(...)
"_db_settings": {

"type": "choice",
"choices": ["choice1", "choice2", "choice3"],
"default": "choice1"

}
}

You can also provide the list/choice items’ item_type.

"field": {
(...)
"_db_settings": {

"type": "list",
"item_type": "string"

}
}

Other _db_settings

Note that you can pass any engine-specific arguments to your fields by defining such arguments in _db_settings.

Event Handlers

Ramses supports Nefertari event handlers. Ramses event handlers also have access to Nefertari’s wrapper API which
provides additional helpers.

1.5. Event Handlers 9

http://nefertari.readthedocs.org/en/stable/event_handlers.html
http://nefertari.readthedocs.org/en/stable/models.html#wrapper-api

Ramses Documentation, Release

Setup

Writing Event Handlers

You can write custom functions inside your __init__.py file, then add the @registry.add decorator before
the functions that you’d like to turn into CRUD event handlers. Ramses CRUD event handlers has the same API as
Nefertari CRUD event handlers. Check Nefertari CRUD Events doc for more details on events API.

Example:

import logging
from ramses import registry

log = logging.getLogger('foo')

@registry.add
def log_changed_fields(event):

changed = ['{}: {}'.format(name, field.new_value)
for name, field in event.fields.items()]

logger.debug('Changed fields: ' + ', '.join(changed))

Connecting Event Handlers

When you define event handlers in your __init__.py as described above, you can apply them on per-model basis.
If multiple handlers are listed, they are executed in the order in which they are listed. Handlers should be defined in the
root of JSON schema using _event_handlers property. This property is an object, keys of which are called “event
tags” and values are lists of handler names. Event tags are composed of two parts: <type>_<action> whereby:

type Is either before or after, depending on when handler should run - before view method call or after respec-
tively. You can read more about when to use before vs after event handlers.

action Exact name of Nefertari view method that processes the request (action) and special names for authentication
actions.

Complete list of actions:

• index - Collection GET

• create - Collection POST

• update_many - Collection PATCH/PUT

• delete_many - Collection DELETE

• collection_options - Collection OPTIONS

• show - Item GET

• update - Item PATCH

• replace - Item PUT

• delete - Item DELETE

• item_options - Item OPTIONS

• login - User login (POST /auth/login)

• logout - User logout (POST /auth/logout)

• register - User register (POST /auth/register)

10 Chapter 1. Table of Contents

http://nefertari.readthedocs.org/en/stable/event_handlers.html#before-vs-after

Ramses Documentation, Release

• set - triggers on all the following actions: create, update, replace, update_many and register.

Example

We will use the following handler to demonstrate how to connect handlers to events. This handler logs request to
the console.

import logging
from ramses import registry

log = logging.getLogger('foo')

@registry.add
def log_request(event):

log.debug(event.view.request)

Assuming we had a JSON schema representing the model User and we want to log all collection GET requests on the
User model after they are processed using the log_request handler, we would register the handler in the JSON
schema like this:

{
"type": "object",
"title": "User schema",
"$schema": "http://json-schema.org/draft-04/schema",
"_event_handlers": {

"after_index": ["log_request"]
},
...

}

Other Things You Can Do

You can update another field’s value, for example, increment a counter:

from ramses import registry

@registry.add
def increment_count(event):

instance = event.instance or event.response
counter = instance.counter
incremented = counter + 1
event.set_field_value('counter', incremented)

You can update other collections (or filtered collections), for example, mark sub-tasks as completed whenever a task
is completed:

from ramses import registry
from nefertari import engine

@registry.add
def mark_subtasks_completed(event):

if 'task' not in event.fields:
return

1.5. Event Handlers 11

Ramses Documentation, Release

completed = event.fields['task'].new_value
instance = event.instance or event.response

if completed:
subtask_model = engine.get_document_cls('Subtask')
subtasks = subtask_model.get_collection(task_id=instance.id)
subtask_model._update_many(subtasks, {'completed': True})

You can perform more complex queries using Elasticsearch:

from ramses import registry
from nefertari import engine
from nefertari.elasticsearch import ES

@registry.add
def mark_subtasks_after_2015_completed(event):

if 'task' not in event.fields:
return

completed = event.fields['task'].new_value
instance = event.instance or event.response

if completed:
subtask_model = engine.get_document_cls('Subtask')
es_query = 'task_id:{} AND created_at:[2015 TO *]'.format(instance.id)
subtasks_es = ES(subtask_model.__name__).get_collection(_raw_terms=es_query)
subtasks_db = subtask_model.filter_objects(subtasks_es)
subtask_model._update_many(subtasks_db, {'completed': True})

Field processors

Ramses supports Nefertari field processors. Ramses field processors also have access to Nefertari’s wrapper API which
provides additional helpers.

Setup

To setup a field processor, you can define the _processors property in your field definition (same
level as _db_settings). It should be an array of processor names to apply. You can also use
the _backref_processors property to specify processors for backref field. For backref processors to
work, _db_settings must contain the following properties: document, type=relationship and
backref_name.

"username": {
...
"_processors": ["lowercase"]

},
...

You can read more about processors in Nefertari’s field processors documentation including the list of keyword argu-
ments passed to processors.

12 Chapter 1. Table of Contents

http://nefertari.readthedocs.org/en/stable/field_processors.html
http://nefertari.readthedocs.org/en/stable/models.html#wrapper-api
http://nefertari.readthedocs.org/en/stable/field_processors.html
http://nefertari.readthedocs.org/en/stable/field_processors.html#keyword-arguments
http://nefertari.readthedocs.org/en/stable/field_processors.html#keyword-arguments

Ramses Documentation, Release

Example

If we had following processors defined:

from .my_helpers import get_stories_by_ids

@registry.add
def lowercase(**kwargs):

""" Make :new_value: lowercase """
return (kwargs['new_value'] or '').lower()

@registry.add
def validate_stories_exist(**kwargs):

""" Make sure added stories exist. """
story_ids = kwargs['new_value']
if story_ids:

Get stories by ids
stories = get_stories_by_ids(story_ids)
if not stories or len(stories) < len(story_ids):

raise Exception("Some of provided stories do not exist")
return story_ids

User model json
{

"type": "object",
"title": "User schema",
"$schema": "http://json-schema.org/draft-04/schema",
"properties": {

"stories": {
"_db_settings": {

"type": "relationship",
"document": "Story",
"backref_name": "owner"

},
"_processors": ["validate_stories_exist"],
"_backref_processors": ["lowercase"]

},
...

}
}

Notes:

• validate_stories_exist processor will be run when request changes User.stories value.
The processor will make sure all of story IDs from request exist.

• lowercase processor will be run when request changes Story.owner field. The processor will low-
ercase new value of the Story.owner field.

Relationships

Basics

Relationships in Ramses are used to represent One-To-Many(o2m) and One-To-One(o2o) relationships between ob-
jects in database.

1.7. Relationships 13

Ramses Documentation, Release

To set up relationships fields of types foreign_key and relationship are used. foreign_key field is not
required when using nefertari_mongodb engine and is ignored.

For this tutorial we are going to use the example of users and stories. In this example we have a OneToMany relation-
ship betweed User and Story. One user may have many stories but each story has only one owner. Check the end
of the tutorial for the complete example RAML file and schemas.

Example code is the very minimum needed to explain the subject. We will be referring to the examples along all the
tutorial.

Field “type”: “relationship”

Must be defined on the One side of OneToOne or OneToMany relationship (User in our example). Relationships are
created as OneToMany by default.

Example of using relationship field (defined on User model in our example):

"stories": {
"_db_settings": {

"type": "relationship",
"document": "Story",
"backref_name": "owner"

}
}

Required params:

type String. Just relationship.

document String. Exact name of model class to which relationship is set up. To find out the name of model use
singularized uppercased version of route name. E.g. if we want to set up relationship to objects of /stories
then the document arg will be Story.

backref_name String. Name of back reference field. This field will be auto-generated on model we set up relationship
to and will hold the instance of model we are defining. In our example, field Story.owner will be generated
and it will hold instance of User model to which story instance belongs. Use this field to change relationships
between objects.

Field “type”: “foreign_key”

This represents a Foreign Key constraint in SQL and is only required when using nefertari_sqla engine. It is
used in conjunction with the relationship field, but is used on the model that relationship refers to. For example,
if the User model contained the relationship field, than the Story model would need a foreign_key field.

Notes:

• This field is not required and is ignored when using nefertari_mongodb engine.

• Name of the foreign_key field does not depend on relationship params in any way.

• This field MUST NOT be used to change relationships. This field only exists because it is required by
SQLAlchemy.

Example of using foreign_key field (defined on Story model in our example):

"owner_id": {
"_db_settings": {

"type": "foreign_key",
"ref_document": "User",

14 Chapter 1. Table of Contents

Ramses Documentation, Release

"ref_column": "user.username",
"ref_column_type": "string"

}
}

Required params:

type String. Just foreign_key.

ref_document String. Exact name of model class to which foreign key is set up. To find out the name of model use
singularized uppercased version of route name. E.g. if we want to set up foreign key to objects of /user then
the ref_document arg will be User.

ref_column String. Dotted name/path to ref_document model’s primary key column. ref_column is the low-
ercased name of model we refer to in ref_document joined by a dot with the exact name of its primary key
column. In our example this is "user.username".

ref_column_type String. Ramses field type of ref_document model’s primary key column specified in
ref_column parameter. In our example this is "string" because User.username is "type":
"string".

One to One relationship

To create OneToOne relationships, specify "uselist": false in _db_settings of relationship field.
When setting up One-to-One relationship, it doesn’t matter which side defines the relationship field.

E.g. if we had Profile model and we wanted to set up One-to-One relationship between Profile and User, we
would have to define a regular foreign_key field on Profile:

"user_id": {
"_db_settings": {

"type": "foreign_key",
"ref_document": "User",
"ref_column": "user.username",
"ref_column_type": "string"

}
}

and relationship field with "uselist": false on User:

"profile": {
"_db_settings": {

"type": "relationship",
"document": "Profile",
"backref_name": "user",
"uselist": false

}
}

This relationship could also be defined the other way but with the same result: foreign_key field on User and
relationship field on Profile pointing to User.

Multiple relationships

Note: This part is only valid(required) for nefertari_sqla engine, as nefertari_mongodb engine does not use
foreign_key fields.

1.7. Relationships 15

Ramses Documentation, Release

If we were to define multiple relationships from model A to model B, each relationship must have a corresponding
foreign_key defined. Also you must use a foreign_keys parameter on each relationship field to specify
which foreign_key each relationship uses.

E.g. if we were to add new relationship field User.assigned_stories, relationship fields on User would have
to be defined like this:

"stories": {
"_db_settings": {

"type": "relationship",
"document": "Story",
"backref_name": "owner",
"foreign_keys": "Story.owner_id"

}
},
"assigned_stories": {

"_db_settings": {
"type": "relationship",
"document": "Story",
"backref_name": "assignee",
"foreign_keys": "Story.assignee_id"

}
}

And fields on Story like so:

"owner_id": {
"_db_settings": {

"type": "foreign_key",
"ref_document": "User",
"ref_column": "user.username",
"ref_column_type": "string"

}
},
"assignee_id": {

"_db_settings": {
"type": "foreign_key",
"ref_document": "User",
"ref_column": "user.username",
"ref_column_type": "string"

}
}

Complete example

example.raml

#%RAML 0.8

title: Example REST API
documentation:

- title: Home
content: |

Welcome to the example API.
baseUri: http://{host}:{port}/{version}
version: v1

16 Chapter 1. Table of Contents

Ramses Documentation, Release

/stories:
displayName: All stories
get:

description: Get all stories
post:

description: Create a new story
body:

application/json:
schema: !include story.json

/{id}:
displayName: One story
get:

description: Get a particular story

/users:
displayName: All users
get:

description: Get all users
post:

description: Create a new user
body:

application/json:
schema: !include user.json

/{username}:
displayName: One user
get:

description: Get a particular user

user.json

{
"type": "object",
"title": "User schema",
"$schema": "http://json-schema.org/draft-04/schema",
"required": ["username"],
"properties": {

"username": {
"_db_settings": {

"type": "string",
"primary_key": true

}
},
"stories": {

"_db_settings": {
"type": "relationship",
"document": "Story",
"backref_name": "owner"

}
}

}
}

story.json

{
"type": "object",
"title": "Story schema",
"$schema": "http://json-schema.org/draft-04/schema",

1.7. Relationships 17

Ramses Documentation, Release

"properties": {
"id": {

"_db_settings": {
"type": "id_field",
"primary_key": true

}
},
"owner_id": {

"_db_settings": {
"type": "foreign_key",
"ref_document": "User",
"ref_column": "user.username",
"ref_column_type": "string"

}
}

}
}

Changelog

• : Scaffold defaults to Pyramid 1.6.1

• #99: Use ACL mixin from nefertari-guards (if enabled)

• #107: Fixed issue with hyphens in resource paths

• : Scaffold defaults to Pyramid 1.6.1

• #99: Use ACL mixin from nefertari-guards (if enabled)

• #88: Reworked the creation of related/auth_model models, order does not matter anymore

• : Fixed a bug using ‘required’ ‘_db_settings’ property on ‘relationship’ field

• : Added support for the property ‘_nesting_depth’ in schemas

• : ACL permission names in RAML now match real permission names instead of http methods

• : Simplified field processors, ‘_before_processors’ is now called ‘_processors’, removed ‘_after_processors’

• : Added support for Nefertari event handlers

• : Added support for Nefertari ‘_hidden_fields’

• : Added support for ‘nefertari-guards’

• : Simplified ACLs (refactoring)

• : Error response bodies are now returned as JSON

• : Prefixed all Ramses schema properties by an underscore: ‘_auth_fields’, ‘_public_fields’,
‘_nested_relationships’, ‘_auth_model’, ‘_db_settings’

• : Properties ‘type’ and ‘required’ are now under ‘_db_settings’

• : Renamed schema’s ‘args’ property to ‘_db_settings’

• : Added support for relationship processors and backref relationship processors (‘back-
ref_after_validation’/’backref_before_validation’)

• : Field name and request object are now passed to field processors under ‘field’ and ‘request’ kwargs respectively

• : Renamed setting ‘debug’ to ‘enable_get_tunneling’

18 Chapter 1. Table of Contents

https://github.com/ramses-tech/ramses/issues/99
https://github.com/ramses-tech/ramses/issues/107
https://github.com/ramses-tech/ramses/issues/99
https://github.com/ramses-tech/ramses/issues/88
https://nefertari-guards.readthedocs.org/

Ramses Documentation, Release

• : Renamed setting ‘ramses.auth’ to ‘auth’

• : Boolean values in RAML don’t have to be strings anymore (previous limitation of pyraml-parser)

• : Fixed a limitation preventing collection names to use nouns that do not have plural forms

• : Fixed processors not applied on fields of type ‘list’ and type ‘dict’

• : Added support for ‘onupdate’ field argument

• : Added support for callables in ‘default’ field argument

• : RAML is now parsed using ramlfications instead of pyraml-parser

• : Added support for JSON schema draft 04

• : Added support for ‘onupdate’ field argument

• : Added support for callables in ‘default’ field argument

• : Added python3 support

• : Forward compatibility with nefertari releases

• : Fixed race condition in Elasticsearch indexing

• : Fixed password minimum length support by adding before and after validation processors

• : Fixed custom processors

• : Fixed login issue

• : Fixed limiting fields to be searched

• : Add support for custom auth model

• : Add support for processors in schema definition

• : Added support for securitySchemes, authentication (Pyramid ‘auth ticket’) and ACLs

• : ES views now read from ES on update/delete_many

• : Improved docs

• : Added unit tests

• : Added several display options to schemas

• : Ramses could not be used in an existing Pyramid project

• : Initial release!

1.8. Changelog 19

Ramses Documentation, Release

Image credit: Wikipedia

20 Chapter 1. Table of Contents

	Table of Contents
	Getting started
	RAML Configuration
	Defining Schemas
	Fields
	Event Handlers
	Field processors
	Relationships
	Changelog

